

# BN-Achtringe (RBNR')<sub>4</sub> aus BN-Vierringen (RBNtBu)<sub>2</sub> durch NtBu/NR'-Austausch<sup>1)</sup>

## Björn Thiele<sup>a</sup>, Peter Schreyer<sup>a</sup>, Ulli Englert<sup>a</sup>, Peter Paetzold<sup>\*a</sup>, Roland Boese<sup>b</sup> und Bernd Wrackmeyer<sup>c</sup>

Institut für Anorganische Chemie der Technischen Hochschule Aachen<sup>a</sup>, Templergraben 55, W-5100 Aachen

Institut für Anorganische Chemie der Universität-Gesamthochschule Essen<sup>b</sup>, Universitätsstraße 5-7, W-4300 Essen

Laboratorium für Anorganische Chemie der Universität Bayreuth<sup>c</sup>, Postfach 101251, W-8580 Bayreuth

Eingegangen am 28. März 1991

Key Words: Tetrazatetraborocanes / Boron-nitrogen ring compounds / [2+3] Cycloadditions

#### Eight-Membered BN Rings (RBNR')<sub>4</sub> from Four-Membered BN Rings (RBNtBu)<sub>2</sub> by an Exchange NtBu/NR'

Reactions of the four-membered BN ring compounds  $(RBNtBu)_2$  (1a-e: R = Me, Et, *i*Pr, *i*Bu, Pr) with azides R'N<sub>3</sub> (R' = PhCH<sub>2</sub>, Pr, *i*Bu, Ph) and with the nitrone PhHC=N(Me)=O are studied. The five-membered ring [=(Me)B=N(tBu)-N=N-(PhCH<sub>2</sub>)N=] (2a) is formed from the four-membered ring 1a and PhCH<sub>2</sub>N<sub>3</sub> in the ratio 1:2. An exchange of NtBu for NR' with elimination of tBuN<sub>3</sub> is observed, however, in the reaction of the ring compounds 1b-d with R'N<sub>3</sub>. Instead of four-membered BN rings, the six-membered BN rings (RBNR')<sub>3</sub> (3a: R/R' = Et/PhCH<sub>2</sub>) and the eightmembered BN rings (RBNR')<sub>4</sub> (4a-h: R/R' = *i*Pr/PhCH<sub>2</sub>, *i*Bu/

PhCH<sub>2</sub>, *i*Pr/Pr, *i*Bu/Pr, *i*Pr/*i*Bu, *i*Bu/*i*Bu, Et/Ph, *i*Bu/Ph) are formed, respectively. The NMR spectra reveal diastereotopic methylene protons (Et, Pr, *i*Bu, PhCH<sub>2</sub>) and methyl groups (*i*Pr, *i*Bu) and thus elucidate the tub-like structure of the eightmembered rings. **3a** and **4a** crystallize in the space group  $P2_1/c$ . The reaction of the four-membered rings 1c - e with the nitrone gives five-membered rings [=-(R)B=-N(IBu)=-B(R)=-N(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)=-D(IBu)

Die Diazadiboretidine  $(RBNR')_2$  (1) und die isoelektronischen Cyclobutadiene  $(RCCR')_2$  vom "Push-pull"-Typ (also solche mit elektronenziehenden bzw. -drückenden Gruppen R und R') haben dieselbe rhombisch-planare Vierringstruktur<sup>2</sup>). Mit genügend großen Liganden R/R', insbesondere im Falle R' = tBu, sind die Vierringe 1 bis wenigstens 300 °C stabil. Mit Dienophilen vermögen sie im Rahmen einer Hetero-Diels-Alder-Reaktion zu Sechsringen zu reagieren, u. a. mit bestimmten Alkinen, [Gl.  $(1a)^{3}$ ], Iminoboranen [Gl.  $(1b)^{4}$ ], Diazenen [Gl.  $(1c)^{3}$ ] und Aldehyden [Gl.  $1d)^{3,5}$ ]. In Einzelfällen, die vom Raumanspruch von R determiniert werden, lassen sich dabei die in allen Fällen als



Chem. Ber. 124 (1991) 2209-2216 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/1010-2209 \$ 3.50+.25/0

Primärprodukte erwarteten Sechsringe vom Hetero-Dewarbenzol-Typ fassen<sup>4,6)</sup>. Den Cyclobutadienen entsprechend, können auch die Diazadiboretidine selbst als Dienophile wirken, wenn die Liganden R/R' klein genug sind, z. B.  $R/R' = iPr/iPr^{7}$ , Me/tBu [Gl. (1e)<sup>8,9</sup>]; dabei läuft die primäre Hetero-Diels-Alder-Reaktion spontan bis zu den entsprechenden Tetrazatetraborocanen weiter, d. s. wannenförmig gebaute Achtringe vom Cyclooctatetraen-Typ mit alternierenden Einfach- und Doppelbindungen, jedoch sind die beiden genannten Cyclodimerisierungsreaktionen im Gegensatz zur organischen Parallelreaktionen temperaturabhängig reversibel und bedürfen in keiner Reaktionsrichtung des Zusatzes von Katalysatoren.

Können Diazadiboretidine auch mit 1,3-dipolaren Systemen Cyclisierungsreaktionen eingehen? Mit dem Nitron O-= N(Me)-= CHPh scheint dies der Fall zu sein, wenn auch die Produkte auf eine mehrstufige Reaktionsfolge schließen lassen [Gl. (1 f)]<sup>5</sup>. Wir beabsichtigten nunmehr, die Eignung organischer Azide R'N<sub>3</sub> als 1,3-Dipole in der Reaktion mit Vierringen (RBNtBu)<sub>2</sub> zu prüfen.

## Umsetzung von Diazadiboretidinen mit Aziden

Zunächst setzten wir Benzylazid mit Diazadiboretidinen  $(RBNtBu)_2$  um. Die Reaktionsprodukte fallen in Abhängigkeit von der Größe des Rests R unterschiedlich aus. Der Vierring (MeBNtBu)<sub>2</sub> (1a) wird von Benzylazid gespalten, und als Produkt läßt sich mit 38% Ausbeute ein Fünfring isolieren, der formal dem Produkt einer [2 + 3]-Cycloaddition von Iminoboranen MeB = NtBu und PhCH<sub>2</sub>N<sub>3</sub> entspricht [Gl. (2)], wie sie mit isolierten Iminoboranen und Aziden wohlbekannt ist<sup>2)</sup>. – Geht man zum Vierring (EtBNtBu)<sub>2</sub> (1b) über, so bildet sich mit PhCH<sub>2</sub>N<sub>3</sub> ein unerwartetes Produkt: Die Nitren-Einheiten tBuN und Ph-CH<sub>2</sub>N der Reaktanden werden ausgetauscht, und statt des Vierrings [EtBN(CH<sub>2</sub>Ph)]<sub>2</sub> isoliert man den entsprechenden Sechsring, das Borazin **3a** [Gl. (3)]. – Eine weitere  $\alpha$ -ständige Me-Gruppe (R = *i*Pr) bewirkt, daß aus (*i*PrBNtBu)<sub>2</sub> (1c) und PhCH<sub>2</sub>N<sub>3</sub> ebenfalls durch  $tBuN/PhCH_2N$ -Austausch jetzt nicht ein Borazin, sondern der entsprechende Achtring 4a entsteht [Gl. (4)].

Die Reaktion nach Gl. (4) läßt sich verallgemeinern. Der Vierring (iBuBNtBu)<sub>2</sub> (1d) ergibt mit PhCH<sub>2</sub>N<sub>3</sub> ebenfalls einen  $tBuN/PhCH_2N$ -Austausch unter Achtringbildung, und die Azide PrN<sub>3</sub>,  $iBuN_3$  und PhN<sub>3</sub> reagieren mit einzelnen der Vierringe 1b-d ebenso, so daß wir auf diesem Wege acht neue Achtring-Produkte nach Gl. (5) analysenrein in Ausbeuten zwischen 41 und 66% erhalten konnten (Tab. 1).



Zur Charakterisierung der Produkte, insbesondere zur Festlegung, ob sich Vier-, Sechs- oder Achtringe gebildet haben, besitzen die <sup>11</sup>B-NMR-Signale nur geringen Wert. Unter Beschränkung auf CCl<sub>4</sub>, CDCl<sub>3</sub> oder CH<sub>2</sub>Cl<sub>2</sub> als Lösungsmittel findet man in acht planar gebauten Tetraalkyl-Vierringen vom Typ 1  $\delta$ <sup>(11</sup>B)-Werte zwischen 42.5 und 45.8<sup>8-13)</sup>. Zwölf Hexaalkylborazine vom Typ 3 ergeben in denselben Lösungsmitteln Signale zwischen  $\delta = 34.8$  und 40.8, also gut abgegrenzt von den Vierringen 1<sup>13-16)</sup>. In drei Octaalkyl-Achtringen vom Typ 4 findet man  $\delta$ <sup>(11</sup>B)-Werte bei  $\delta = 37.8^{8}$ , 40.0 (in [D<sub>8</sub>]Toluol)<sup>7)</sup> und 38.0<sup>12)</sup>, also im Bereich der Borazine. Für die Achtringe **4a** – **h** ergeben sich <sup>11</sup>B-NMR-Signale im engen Bereich zwischen  $\delta = 39.3$  und 42.4 (Tab. 1), also zwischen den für Vierringe bzw. Sechsringe charakteristischen Bereichen, aber sich mit diesen teil-



Chem. Ber. 124 (1991) 2209-2216

weise überlappend. – Anders als die  $^{11}B$ - vermögen jedoch die <sup>1</sup>H- und <sup>13</sup>C-NMR-Signale die Konstitution von 4a-h zu erhellen. Setzt man für 4a-h einen wannenförmigen Bau voraus, so wie es für die Achtringe (MeBNtBu)<sub>4</sub> (4i)<sup>9)</sup> und  $[(SCN)BNtBu]_4$  (4j)<sup>17</sup> röntgenographisch nachgewiesen und für die isoelektronischen Cyclooctatetraene typisch ist, dann sind zwar die vier Liganden R untereinander ebenso symmetrisch äquivalent wie die vier Liganden R' (Punktgruppe  $S_4$ ), nicht aber die beiden H-Atome einer jeden Methylengruppe in Et, Pr, iBu und CH<sub>2</sub>Ph sowie die beiden Me-Gruppen von iPr und iBu, und dies sollte zu 1:1-Aufspaltungen im <sup>1</sup>H- (CH<sub>2</sub>) bzw. im <sup>1</sup>H- und im <sup>13</sup>C-NMR-Spektrum (CMe<sub>2</sub>) mit entsprechenden  ${}^{2}J(HH)$ -Kopplungen im ersten Fall führen. Genau dies wird beobachtet. Nicht aufgelöst wurden von 13 denkbaren CH<sub>2</sub>-Aufspaltungen lediglich vier (CH<sub>2</sub>Ph in 4b, CH<sub>2</sub>-1 und CH<sub>2</sub>-2 von Pr in 4d und CH<sub>2</sub> von NiBu in 4f) und von 9 denkbaren Me-Aufspaltungen zwei im <sup>1</sup>H-NMR-Spektrum (iPr von 4a und NiBu von 4f) und eine im <sup>13</sup>C-NMR-Spektrum (NiBu von **4f**). Die Kopplungskonstanten  ${}^{2}J(HH)$  für die nicht-äquivalenten Methylenprotonen liegen zwischen 12.0 und 15.6 Hz (Tab. 1). – In Übereinstimmung mit dieser Argumentation zeigen die planar gebauten Borazine derartige Aufspaltungen nicht, da die Protonen entsprechender CH2-Gruppen, z. B. in der Verbindung (EtBNCH<sub>2</sub>Ph)<sub>3</sub> (3a), und die Methylgruppen entsprechenden iPr-Reste, z. B. im Borazin  $(iPrBNiPr)_3$  (s. o.), wegen einer Spiegelebene untereinander äquivalent sind (Punktgruppe  $C_{3h}$ ). – Die NMRspektroskopischen Konstitutionsaussagen haben wir für das Borazin **3a** und den Achtring **4a** durch eine röhtgenographische Strukturbestimmung erhärtet (s. u.).

Während die bekannten Achtringverbindungen (Me-BNtBu)<sub>4</sub> und (*i*PrBN*i*Pr)<sub>4</sub> und die entsprechenden Vierringe ein reversibles, temperaturabhängiges Gleichgewicht eingehen, ist es uns nicht gelungen, die Achtringe 4a - h thermisch in die entsprechenden Vierringe überzuführen. Die irreversible Bildung eines Achtrings haben wir im Falle der Tetramerisierung des Iminoborans  $tBuB \equiv NMe$  schon einmal beobachtet<sup>12</sup>). Auch die für den Achtring (FBNMe)<sub>4</sub> festgestellte thermische Umlagerung in den Sechsring (FBNMe)<sub>3</sub> gehen die Achtringe 4a - h nicht ein<sup>18</sup>).

Ohne im folgenden Details mitzuteilen, sei vermerkt, daß man eine Reaktion nach Gl. (5) auch bei der Umsetzung der Vierringe (BuBNtBu)<sub>2</sub> und  $[(F_3C_6)BNtBu)]_2$  mit Benzylazid und von  $[(F_5C_6)BNtBu]_2$  mit Isobutylazid beobachtet. Die Umsetzung von (MeBNtBu)<sub>2</sub> mit Phenylazid liefert einen Achtring [Me<sub>4</sub>B<sub>4</sub>N<sub>4</sub>Ph<sub>3</sub>tBu] und von (PrBNtBu)<sub>2</sub> mit Isobutylazid einen Achtring [Pr<sub>4</sub>B<sub>4</sub>N<sub>4</sub>iBu<sub>3</sub>tBu], in beiden Fällen unter Austausch nur von drei Viertel der NtBu-Einheiten durch NR'. Fünfring-Verbindungen nach Gl. (2) entstehen aus dem Vierring (PrBNtBu)<sub>2</sub> und Benzylazid [neben Borazin (PrBNCH<sub>2</sub>Ph)<sub>3</sub>] sowie aus (MeBNtBu)<sub>2</sub> und (Et-

Tab. 1. Experimentelle Angaben zu den Tetrazatetraborocanen 4a – h: Eingesetzte Mengen, Ausbeuten, Schmelz- bzw. Zersetzungspunkte, <sup>1</sup>H-, <sup>13</sup>C- und <sup>11</sup>B-NMR-Verschiebungen (in CDCl<sub>3</sub>, ca. 3–10proz., 26–27°C)<sup>a)</sup>, Molmassen und mikroanalytisch bestimmte C-, H- und N-Werte

| $\mathbf{R}/\mathbf{R}'$          | <b>4a</b><br>iPr/C <b>H</b> <sub>2</sub> Ph | 4b<br>iBu/CH2Ph      | 4c<br>iPr/Pr | <b>4d</b><br>iBu/Pr  | <b>4e</b><br>iPr∕iBu | <b>4f</b><br><i>i</i> Bu∕ <i>i</i> Bu | <b>4g</b><br>Et/Ph   | 4h<br>iBu/Ph         |
|-----------------------------------|---------------------------------------------|----------------------|--------------|----------------------|----------------------|---------------------------------------|----------------------|----------------------|
| 1b-d [mmoi]                       | 8.0                                         | 6.0                  | 5.5          | 5.5                  | 8.4                  | 8.0                                   | 6.3                  | 7.2                  |
| R'N <sub>3</sub> [mmol]           | 16.1                                        | 12.0                 | 11.0         | 11.0                 | 16.8                 | 16.1                                  | 12.6                 | 14.7                 |
| Ausb. (%)                         | 63                                          | 50                   | 41           | 54                   | 46                   | 52                                    | 61                   | 66                   |
| Schmp. [°C]                       | 147                                         | 131                  | 166          | 89                   | 158                  | 121                                   | 118 <sup>b)</sup>    | 115 <sup>b)</sup>    |
| <sup>1</sup> H <sup>c)</sup> BCH. | 1.50 sept                                   | 0.46 m <sup>d)</sup> | 1.33 sept    | $0.72 \text{ m}^{d}$ | 1.43 sept            | $0.72 \text{ m}^{d}$                  | 0.90 m <sup>d)</sup> | 0.78 m <sup>d)</sup> |
| <u>^</u>                          | /                                           | 0.84 m               | / 1          | 0.85 m               | / .                  | 0.88 m                                | 0.93 m               | 0.82 m               |
| Me(R)                             | 0.70 d <sup>e)</sup>                        | 0.79 d               | 0.91 d       | 0.84 d               | 0.93 d               | 0.92 d                                | 0.67 t               | 0.63 d               |
|                                   |                                             | 0.85 d               | 1.09 d       | 0.94 d               | 1.08 d               | 0.96 d                                | 1                    | 0.66 d               |
| NCH,                              | 4.20 d <sup>d)</sup>                        | 4.40 d <sup>e)</sup> | 2.68 m       | 2.82 m <sup>e)</sup> | 2.70 m <sup>d)</sup> | 2.93 m <sup>e)</sup>                  | 1                    | /                    |
| ^                                 | 4.56 d                                      |                      | 3.10 m       |                      | 3.02 m               |                                       | 1                    | 1                    |
| Me(R')                            | 1                                           | /                    | 0.79 t       | 0.78 t               | 0.78 d               | 0.81 d <sup>e)</sup>                  | 1                    | 1                    |
| × /                               | ,<br>/                                      |                      | 1            | 1                    | 0.80 d               |                                       | 1                    | ',                   |
| <sup>13</sup> C <sup>0</sup> BCH, | 15.4                                        | 27.9                 | ,<br>14.5 br | 27.7                 | 15.5                 | 29.8                                  | 10.8                 | 30.1                 |
| Me(R)                             | 18.2                                        | 25.2                 | 18.6         | 25.3                 | 18.4                 | 26.4                                  | 9.0                  | 25.9                 |
|                                   | 21.5                                        | 26.7                 | 21.4         | 27.7                 | 21.6                 | 26.6                                  | 1                    | 26.3                 |
| NCH <sub>x</sub>                  | 48.8                                        | 50.8                 | 46.8         | 48.7                 | 53.4                 | 54,7                                  | 1                    | 7                    |
| Me(R')                            | /                                           | /                    | 12.0         | 12.0                 | 21.3                 | 21,4 <sup>e)</sup>                    | 1                    | 1                    |
|                                   | /                                           | 1                    | /            | /                    | 21.6                 |                                       | 1                    | /                    |
| 11 <b>B</b>                       | 40.3                                        | 41.0                 | 40.2         | 40.4                 | 39.3                 | 39.9                                  | 42.4                 | 40.8                 |
| M [g/mol]                         | 636.2                                       | 692.3                | 444.0        | 500.1                | 500.1                | 556.2                                 | 523.9                | 636.2                |
| C (ber.)                          | 75.52                                       | 76.34                | 64.93        | 67.25                | 67.25                | 69.10                                 | 73.36                | 75.52                |
| (gef.)                            | 75.81                                       | 76.81                | 63.89        | 67.47                | 66.98                | 68.89                                 | 73.84                | 74.25                |
| H (ber.)                          | 8.87                                        | 9.32                 | 12.71        | 12.90                | 12.90                | 13.05                                 | 7.70                 | 8.87                 |
| (gef.)                            | 9.05                                        | 10.01                | 12.81        | 13.39                | 13.31                | 13.39                                 | 7.90                 | 9.07                 |
| N (ber.)                          | 8.81                                        | 8.09                 | 12.62        | 11.20                | 11.20                | 10.07                                 | 10.69                | 8.81                 |
| (gef.)                            | 8.83                                        | 7.84                 | 12.29        | 11.27                | 11.15                | 10.13                                 | 10.69                | 8.54                 |

<sup>a)</sup> Bruker AC 300, bei Bedarf Verdeutlichung mit Bruker AM 500 (<sup>1</sup>H, <sup>13</sup>C); Jeol-PS-100 (<sup>11</sup>B).  $-^{b)}$  Zers.-P.  $-^{c)}$  Weitere Werte:  $\delta[\beta$ -CH<sub>2</sub> (Pr)] = 1.25, 1.29 (2 m, <sup>2</sup>J<sub>HH</sub> = 12.0 Hz, **4c**), 1.39 m<sup>b</sup> (**4d**);  $\delta[CH(BiBu)] = 1.75, 1.70, 1.85, 1.68 (4 m für$ **4b**,**d**,**f**,**h** $); <math>\delta[CH(NiBu)] = 1.55, 1.45 (2 m für$ **4e**,**f** $); <math>\delta[Ph] = 7.20 (m,$ **4a**), 7.00/7.26, 7.20/7.30, 7.30/7.18 (je 2 m 2:3,**4b**,**g**,**h** $). <math>-^{d)} Z_{HH} = 15.6, 14.7, 14.6, 13.7, 14.9, 14.0, 15.5 ($ **4b**,**d**-**h** $). <math>-^{e)}$  Auch bei 500 und 125.1 MHz keine Aufspaltung für die nicht äquivalenten <sup>1</sup>H- bzw. <sup>13</sup>C-Atome.  $-^{0}$  Weitere Werte:  $\delta[C-2(Pr)] = 27.5, 26.8 (4c, d); \delta[C-2(BiBu)] = 26.1, 26.4, 26.8, 25.0 (4b, d, f, h); \delta[C-2(NiBu)] = 31.3, 31.0 (4e, f); \delta(Ph) (4a, b, g, h) = 141.7, 141.4, 145.8, 146.8 (iC), 127.9, 127.5, 127.3, 128.5 (oC), 128.1, 128.1, 128.2, 127.5 (m-C), 126.4, 126.2, 124.5, 126.2 (p-C).$ 



 $BNtBu_2$  jeweils mit Isobutylazid. Versucht man, die Vierring-Verbindung (EtBNtBu)<sub>2</sub> anstatt mit Alkylaziden mit Acylaziden wie Me<sub>3</sub>SiN<sub>3</sub> oder *i*Bu<sub>2</sub>BN<sub>3</sub> umzusetzen, so beobachtet man keine Reaktion; das ist auch der Fall, wenn man einen Vierring mit *B*-Aminogruppen wie (XBNtBu)<sub>2</sub> [X = tBu(Me<sub>3</sub>Si)N] mit Benzylazid vereint.

#### Kristall- und Molekülstruktur von 3a und 4a

Die Strukturen von 3a und 4a wurden röntgenstrukturanalytisch ermittelt. Die Atomkoordinaten finden sich in Tab. 2, ausgewählte Abstände und Winkel in Tab. 3, experimentelle Einzelheiten in Tab. 4 und Ortep-Darstellungen der Moleküle in Abb. 1. Beide Verbindungen kristallisieren monoklin in der Raumgruppe  $P2_1/c$ .

Das Borazin **3a** weist erwartungsgemäß einen planaren Sechsring auf. Die Winkelsumme von  $360^{\circ}$  an allen sechs Ringatomen zeigt, daß keines dieser Atome pyramidal deformiert ist. Der BN-Abstand schwankt zwischen 143.5 und 145.9 pm und beträgt im Mittel 144.8 pm. Das ist im Einklang mit der cyclischen Delokalisierung der sechs Ring- $\pi$ -

Tab. 2. Atomkoordinaten (× 10<sup>4</sup>) und äquivalente isotrope atomare Temperaturfaktoren U (pm<sup>2</sup> × 10<sup>-1</sup>) (berechnet als ein Drittel der Spur des orthogonalen  $U_{ij}$ -Tensors) von **3a** und **4a** (Atome in starren Gruppen ohne Standardabweichung)

|            | 3а           |         |              |            | 4a       |             |         |                  |
|------------|--------------|---------|--------------|------------|----------|-------------|---------|------------------|
|            | x            | у       | z            | U          | x        | у           | z       | U                |
| N1         | 2500(2)      | 188(2)  | 3460(3)      | 202(10)    | 9431(2)  | 1781(1)     | 848(1)  | 413(5)           |
| N2         | 3449(2)      | 925(2)  | 1982(3)      | 208(11)    | 8234(2)  | 2800(1)     | 164(1)  | 419(5)           |
| N3         | 1882(2)      | 1332(2) | 2359(3)      | 208(10)    | 6954(2)  | 2545(1)     | 1089(1) | 393(5)           |
| N4         | 1            | 1       | 1            | 1          | 9093(2)  | 2530(1)     | 1883(1) | 390(5)           |
| B1         | 3377(3)      | 298(3)  | 2873(5)      | 215(15)    | 9377(3)  | 2422(2)     | 367(1)  | 421(8)           |
| <b>B</b> 2 | 2704(3)      | 1445(3) | 1638(4)      | 235(15)    | 2034(3)  | 2551(1)     | 361(2)  | 405(8)           |
| в3         | 1751(3)      | 714(2)  | 3253(5)      | 216(15)    | 7916(2)  | 2855(2)     | 1688(1) | 400(8)           |
| B4         | 1            | 1       | 1            | 1          | 9439(2)  | 1826(2)     | 1590(2) | 402(8)           |
| C10        | 2369(3)      | -464(2) | 4345(4)      | 244(14)    | 9842(2)  | 1103(1)     | 528(1)  | 503(8)           |
| C11        | 2411         | - 309   | 5903         | 223(13)    | 8772(2)  | 651(1)      | 116(3)  | 482(8)           |
| C12        | 1769(1)      | -640(1) | 6690(2)      | 268(14)    | 8270(3)  | $91(2)^{2}$ | 448(2)  | 610(9)           |
| C13        | 1808         | -510    | 8131         | 309(15)    | 7332(3)  | 346(2)      | 69(2)   | 733(11)          |
| C14        | 2488         | -49     | 8784         | 321(15)    | 6901(3)  | 237(2)      | 654(2)  | 708(12)          |
| C15        | 3160         | 281     | 7997         | 310(15)    | 7406(3)  | 314(2)      | 992(2)  | 743(12)          |
| C16        | 3092         | 151     | 6556         | 249(14)    | 8333(3)  | 753(2)      | 610(2)  | 643(9)           |
| C17        | 4210(3)      | -260(2) | 3187(4)      | 269(14)    | 10622(2) | 2654(2)     | 90(1)   | 562(8)           |
| C18        | 4184(3)      | -882(2) | 2081(5)      | 376(16)    | 10659(3) | 2421(2)     | 694(2)  | 787(9)           |
| C19        | 1            |         | /            | /          | 11845(2) | 2443(2)     | 594(2)  | 691(9)           |
| C20        | ,<br>4359(3) | 1063(2) | ,<br>1462(4) | 260(14)    | 8075(3)  | 3376(1)     | 402(1)  | 550(8)           |
| C21        | 5051         | 1456    | 2516         | 201(12)    | 7864(2)  | 4132(1)     | 144(1)  | 479(6)           |
| C22        | 4800(1)      | 1719(1) | 3791(3)      | 281(14)    | 6752(3)  | 4495(2)     | 389(2)  | 659(9)           |
| C23        | 5443         | 2099    | 4703         | 322(15)    | 6571(3)  | 5192(2)     | 154(2)  | 830(10)          |
| C24        | 6337         | 2215    | 4339         | 301(15)    | 7512(3)  | 5533(2)     | 322(2)  | 840(10)          |
| C25        | 6588         | 1952    | 3064         | 267(14)    | 8641(3)  | 5187(2)     | 546(2)  | 730(10)          |
| C26        | 5945         | 1572    | 2152         | 229(13)    | 8808(3)  | 4495(2)     | 315(2)  | 589(9)           |
| C27        | 2769(3)      | 2112(2) | 608(4)       | 293(15)    | 5907(2)  | 2331(2)     | 290(1)  | 556(8)           |
| C28        | 3128(3)      | 2823(2) | 1344(5)      | 351(15)    | 4788(3)  | 2858(2)     | 419(2)  | 702(10)          |
| C29        | 1            |         | 1            | 1          | 5414(3)  | 1557(2)     | 257(2)  | 768(10)          |
| C30        | í1121(2)     | 1876(2) | 2131(4)      | 242(14)    | 5759(2)  | 2363(1)     | 1311(1) | 448(7)           |
| C31        | 374          | 1714    | 936          | 213(13)    | 5735(2)  | 1652(1)     | 1705(1) | 421(7)           |
| C32        | -380(2)      | 2192(1) | 773(3)       | 288(14)    | 4950(3)  | 1588(2)     | 2194(2) | 617(8)           |
| C33        | -1086        | 2080    | - 307        | 372(16)    | 4828(3)  | 937(2)      | 2528(2) | 804(9)           |
| C34        | -1038        | 1490    | -1125        | 366(16)    | 5489(3)  | 343(2)      | 2379(2) | 818(10)          |
| C35        | -285         | 1012    | -1063        | 369(16)    | 6276(3)  | 398(2)      | 1899(2) | 736(9)           |
| C36        | 421          | 1124    | 18           | 289(14)    | 6402(2)  | 1056(1)     | 1559(1) | 558(8)           |
| C37        | 830(3)       | 634(2)  | 4005(4)      | 243(14)    | 7546(2)  | 3546(1)     | 2110(1) | 505(8)           |
| C38        | 831(3)       | 1090(2) | 5355(4)      | 308(14)    | 7112(3)  | 3350(2)     | 2816(1) | 700(9)           |
| C39        | 1            | 1       | 1            | 1          | 6603(3)  | 4064(1)     | 1651(2) | 680(9)           |
| C40        | <i>'</i> /   |         | 1            | 1          | 10031(2) | 2792(1)     | 2509(1) | 456(7)           |
| C41        | 1            |         |              | <i>'</i> / | 11096(2) | 3225(1)     | 2320(1) | 428(7)           |
| C42        |              |         |              | <i>.</i> / | 12311(2) | 3112(2)     | 2688(2) | 566(8)           |
| C43        | 1            |         |              |            | 13292(3) | 3528(2)     | 2525(2) | 713(10)          |
| C44        | 1            | 1       |              | 1          | 13064(3) | 4054(2)     | 2005(2) | 698(9)           |
| C45        | 1            | 1       |              | 1          | 11857(3) | 4172(2)     | 1633(2) | 686(9)           |
| C46        | 1            | 1       | /            | /          | 10882(2) | 3756(2)     | 1794(1) | 549(8)           |
| C47        | 1            | 1       | 1            | 1          | 9868(3)  | 1158(1)     | 2118(1) | 558(8)           |
| C48        | 1            | 1       | 1            | 1          | 9281(3)  | 1122(2)     | 2795(2) | 743(10)          |
| C49        | 1            | /       | 1            | 1          | 11315(3) | 1086(2)     | 2323(2) | 75 <b>6(</b> 10) |

Tab. 3. Ausgewählte Abstände [pm] und Winkel [°] in 3a und 4a

|                    | 3a                     | 4a                   |             | 3a       | 4a       |             | 3a       | 4a       |
|--------------------|------------------------|----------------------|-------------|----------|----------|-------------|----------|----------|
| N1-B1              | 145.9(5)               | 149.2(2)             | C27-C28     | 154.0(6) | 154.2(2) | N2-B2-N3    | 115.5(3) | 118.2(1) |
| B1-N2              | 143.5(5)               | 141.3(2)             | C27-C29     | /        | 153.4(2) | N2-B2-C27   | 123.8(4) | 117.2(1) |
| N2-B2              | 145.1(5)               | 150.0(2)             | C37-C38     | 153.8(6) | 154.8(2) | N3-B2-C27   | 120.7(4) | 124.6(1) |
| B2-N3              | 145.5(6)               | 140.1(2)             | C37-C39     | /        | 154.4(2) | N3-B3-N1/4  | 117,1(4) | 120.3(1) |
| N3-B3              | 144.1(5)               | 150.2(2)             | C47-C48     | 1        | 154.3(2) | N3-B3-C37   | 120.6(3) | 118.5(1) |
| B3-N1/4            | 144.7(5)               | 139.9(2)             | C47-C49     | 1        | 155.3(2) | N1/4-B3-C37 | 122.2(4) | 121.2(1) |
| N4-B4              | /                      | 149.3(2)             | B1-N1-B3/4  | 122.1(3) | 123.8(1) | N4-B4-N1    | /        | 118.2(1) |
| B4-N1              | 1                      | 140.8(2)             | B1-N1-C10   | 119.9(3) | 113.4(1) | N4-B4-C47   | '/       | 120.2(1) |
| N1-C10             | 148.3(5)               | 149.8(2)             | B3/4-N1-C10 | 118.0(3) | 120.7(1) | N1-B4-C47   | '/       | 121.6(1) |
| N2-C20             | 148.1(5)               | 149.8(2)             | B1-N2-B2    | 123.8(3) | 123.0(1) | N1-C10-C11  | 114.8(3) | 114.2(1) |
| N3-C30             | 148.3(5)               | 148.3(2)             | B1-N2-C20   | 117.2(3) | 121.3(1) | N2-C20-C21  | 114.0(8) | 115.4(1) |
| N4-C40             | /                      | 148.8(2)             | B2-N2-C20   | 118.9(3) | 114.3(1) | N3-C30-C31  | 116.4(3) | 115.9(1) |
| B1-C17             | 158.5(6)               | 160.5(2)             | B2-N3-B3    | 123.9(3) | 125.2(1) | N4-C40-C41  | /        | 115.1(1) |
| B2-C27             | 157.5(6)               | 161.4(2)             | B2-N3-C30   | 118.2(3) | 120.5(1) | B1-C17-C18  | 112.1(3) | 114.8(1) |
| B3-C37             | 159.0(6)               | 160.2(2)             | B3-N3-C30   | 117.9(3) | 113.1(1) | B1-C17-C19  | /        | 114.5(1) |
| B4-C47             | /                      | 160.3(2)             | B3-N4-B4    | /        | 124.1(1) | B2-C27-C28  | 113.7(3) | 114.9(1) |
| C10-C11            | 151.3(4)               | 152.0(2)             | B3-N4-C40   | 1        | 121.5(1) | B2-C27-C29  | / ``     | 115.1(1) |
| C20-C21            | 152.7                  | 151.5(2)             | B4-N4-C40   | 1        | 113.5(1) | B3-C37-C38  | 113.7(3) | 113.2(1) |
| C30-C31            | 152.2(4)               | 151.6(2)             | N1-B1-N2    | 117.3(3) | 119.2(1) | B3-C37-C39  | /        | 114.7(1) |
| C40-C41            | /                      | 150.9(2)             | N1-B1-C17   | 121.2(3) | 118.5(1) | B4-C47-C48  | '/       | 115.9(1) |
| C17-C18<br>C17-C19 | 154 <b>.9(</b> 6)<br>/ | 155.5(2)<br>153.2(2) | N2-B1-C17   | 121.5(3) | 122.3(1) | B4-C47-C49  |          | 112.4(1) |

Tab. 4. Daten zur Röntgenstrukturanalyse von 3a und 4a<sup>a)</sup>

|                                                                 | 3a             | 4a               |
|-----------------------------------------------------------------|----------------|------------------|
| Raumgruppe (Nr.)                                                | P21/c (14)     | P21/c (14)       |
| a (pm)                                                          | 1452.8(5)      | 1088.9(2)        |
| b (pm)                                                          | 1822.7(6)      | 1850,4(5)        |
| c (pm)                                                          | 957.5(4)       | 1897.2(7)        |
| B ( )                                                           | 95.91(3)       | 101.22(2)        |
| $V(nm^3)$                                                       | 2.522(1)       | 3.749(3)         |
| Z                                                               | 4              | 4                |
| Ber. Dichte (g/cm <sup>3</sup> )                                | 1.146          | 1.127            |
| Kristallgröße (mm <sup>3</sup> )                                | 0.23-0.14 0.11 | 1.0.0.8.0.8      |
| Meßtemperatur (K)                                               | 120            | 296              |
| AbsorptKoeff. (cm <sup>-1</sup> )                               | 0.6            | 0.6              |
| AbsorptKorr. (emp.)                                             | nein           | ja               |
| Unabh. Refl. (20max)                                            | 3329           | 5046             |
| Beob. Refl. $[F_0 \ge x\sigma(F)]$                              | 2121(x = 4)    | 3903 (x = 2.5)   |
| $g \text{ in } w^{-1} = \sigma(F_{\circ})^{2} + gF_{\circ}^{2}$ | 0.00176        | 0.00023          |
| R-Wert                                                          | 0.054          | 0.052            |
| <i>R</i> <sub>w</sub> -Wert                                     | 0.056          | 0.075            |
| Parameterzahl                                                   | 265            | 434              |
| Max. Restel.dichte (e/nm3)                                      | 199            | 240              |
| Diffraktometer                                                  | Nicolet R3m/V  | ENRAF-Nonius CAD |
| Rechner                                                         | MicroVAX II    | VAXstation 3100  |
| Programm                                                        | SHEXTL         | SDP              |

<sup>a)</sup> Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55345, der Autoren und des Zeitschriftenzitats angefordert werden.

Elektronen ein deutlich größerer Wert als der für lokalisierte BN-Doppelbindungen von ca. 140 pm, z. B. in 4a, i, j. Die Ringwinkel fallen am Bor (Mittelwert  $116.6^{\circ}$ ) kleiner aus als am Stickstoff (Mittelwert  $123.3^{\circ}$ ).

Ebenso wie bei **4i**, **j** und ebenso wie bei den isoelektronischen Cyclooctatetraenen handelt es sich beim Molekül **4a** um einen wannenförmigen Achtring mit alternierenden BN-Einfach- und -Doppelbindungen. Je vier Ringglieder liegen in der nahezu ebenen Deck- und in der nahezu ebenen Grundfläche der Wanne, wobei die "besten" Ebenen durch Grund- und Deckfläche mit einem Interplanarwinkel von ca. 1° nahezu parallel zueinander liegen. Die nahezu ebenen Seitenflächen der Wanne B1 – N1 – B4 – N4 und N2 – B2 – N3 – B3 bilden mit der Grundfläche N1 – B4 – N3 – B2 und





Abb. 1. Molekülstruktur von 3a und 4a (Ellipsoide mit 50% der Aufenthaltswahrscheinlichkeit der Elektronen)

die Seitenflächen N1 - B1 - N2 - B2 und N3 - B3 - N4 - B4mit der Deckfläche B1-N2-B3-N4 jeweils Winkel von 52°. Die nahezu parallel liegenden BN-Doppelbindungen haben eine mittlere Länge von 139.7 pm gegenüber 140.4 bzw. 140.2 pm bei 4i, j. Die BN-Einfachbindungen sind mit 149.7 pm im Mittel nur wenig kürzer als bei 4i (151.6 pm). aber deutlich länger als bei 4j (145.6 pm). Während die B-Atome planar koordiniert sind (Winkelsumme jeweils 360.0°), macht sich bei den N-Atomen eine geringe Abweichung von der Planarität bemerkbar (Winkelsumme im Mittel 358.6°). Die acht Winkel CBN und CNB mit den BN-Doppelbindungen als Schenkel fallen mit 121.7° im Mittel deutlich größer aus als die acht entsprechenden Winkel mit den BN-Einfachbindungen als Schenkel mit 116.1° im Mittel. Der Grund ist, daß die CB- und CN-Bindungen an einer Doppelbindung in einer Ebene liegen, nicht aber an einer Einfachbindung, so daß es hier zu einer weniger intensiven sterischen Wechsclwirkung der Ring-Liganden auch bei kleinen Winkeln CBN und CNB kommt.

### Zum Mechanismus der Ringglied-Substitution

1a

Wir sehen die Bildung von Siebenringen aus den Vierringen 1a-d und den Aziden R'N<sub>3</sub> nach Gl. (5a) als einen Teilschritt der Ringgliedsubstitution an. Dabei wird es im Rahmen eines reversiblen Gleichgewichts zunächst zur Bildung lockerer Addukte zwischen einem der Lewis-sauren B-Atome eines Vierrings und dem Lewis-basischen  $\alpha$ -N-Atom eines Azids kommen. Ob sich der Siebenring aus diesem Addukt konzertiert oder über ein entsprechendes Hetero-Bicyclo[3.2.0]heptadien als Zwischenstufe bildet, sei dahingestellt. Für den Zerfall der Siebenring-Zwischenstufe kommen die Wege (5b) oder (5c) in Frage. Dabei scheint die Wechselwirkung von R mit tBu entscheidend zu sein. Mit genügend kleinem Rest R, z. B. R = Me, bildet sich unter Abstaltung des Iminoborans  $RB \equiv NtBu$  der Fünfring vom Typ 2 mit benachbarten Gruppen R und tBu; das Iminoboran kann seinerseits in bekannter Weise direkt mit R'N<sub>3</sub> zu demselben Fünfring reagieren, oder es cyclodimerisiert sich zu einem Vierring vom Typ 1, bevor es mit R'N<sub>3</sub> erneut nach Gl. (5a) reagiert. Ist R genügend groß, z. B. R = iPr, dann finden sich die sperrigen Gruppen R und tBu im Vierring vom Typ 1 sterisch besser aufgehoben als in Fünfringen vom Typ 2, so daß nach Gl. (5c) tert-Butylazid abgespalten wird. Die Zwischenprodukte vom Typ 1' können nun in einer analogen Reaktionsfolge zum zweitenmal eine tBuN-Einheit gegen R'N austauschen, so daß sich nach Gl. (5d) Vierringe vom Typ 1" und aus diesen nach Gl. (5e) die isolierten Produkte 4a-h bilden. Die Reaktion nach Gl. (5e) beinhaltet sicherlich einen [4+2]-Cycloadditionsschritt zweier Moleküle 1" mit nachfolgender doppelter Ringöffnung zunächst zum BN-Homologen des Dihydrocyclobutacyclohexens und schließlich zu 4a - h. Wieso der Vierring 1b mit PhCH<sub>2</sub>N<sub>3</sub> anstelle eines Achtrings das Borazin 3a ergibt, ist nicht ganz klar. Vermutlich entsteht zunächst der entsprechende Achtring, der sich sekundär auf unbekanntem Wege zum Sechsring verkleinert. Tatsächlich sind weder Vierringe vom Typ 1 noch Achtringe vom Typ 4 mit allzu kleinen Ringsubstituenten bekannt, insbesondere nicht mit  $\alpha$ -unverzweigten Alkylresten, wie sie mit Et und PhCH<sub>2</sub> in 3a vorliegen.

Die hier vorgetragenen mechanistischen Hypothesen lassen sich erhärten, indem man die Vierringe 1b-f mit dem Nitron PhCH---N(Me)--O als 1,3-dipolarem System umsetzt. Die beobachtete Bildung der Fünfring-Endprodukte 5c-f kann man mit Hilfe der Reaktionsschritte (6a) und (6b) erklären, wie wir für die Bildung von 5f schon einmal dargelegt haben<sup>5)</sup>. Diese Teilreaktionen entsprechen den obigen Teilschritten (5a) und (5b). Dieselben Ausgangsverbindungen 1 führen also mit verschiedenen 1,3-dipolaren Agentien, Azid und Nitron, zu jeweils ganz unerwarteten



Produkten 2 oder 4 bzw. 5, die sich aber durch weitgehend analoge Teilschritte erklären lassen. Diese Analogie der Teilschritte fördert die Plausibilität des angenommenen Mechanismus wechselseitig.

## **Experimenteller** Teil

NMR: Bruker WP 80 SY (<sup>1</sup>H), Bruker WH 270 (<sup>13</sup>C), Jeol JNM-PS-100 (<sup>11</sup>B), in CDCl<sub>3</sub>. - MS: Varian MAT CH5 (70 eV). - Alle Substanzen müssen in Wasser- und Sauerstoff-freien Lösungsmitteln gehandhabt werden.

Die Diazadiboretidine 1a - d wurden auf bekanntem Wege hergestellt<sup>3,10)</sup>. Auf demselben Wege<sup>10)</sup> wurde das auf andere Weise schon einmal gewonnene Produkt 1e dargestellt, und zwar wurden aus 0.90 g  $Pr_2BCl^{19}$  und 1.40 g  $[Me_3Si(tBu)N]BNtBu^{10}$  1.31 g (84%) 1e erhalten.

1-Benzyl-4-tert-butyl-4,5-dihydro-5-methyl-1H-tetrazaborol (2a): 1.85 g (4.25 mmol) des Achtrings (MeBNtBu)<sub>4</sub> werden in 5 ml siedendem Hexan in den Vierring 1a gespalten<sup>3)</sup>. In die siedende Lösung tropft man 2.54 g (19.0 mmol) Benzylazid und rührt 24 h unter Rückfluß. Bei Raumtemp. entfernt man alle flüchtigen Anteile i. Vak. und destilliert dann bei 65 °C/0.005 Torr 1.66 g (38%) 2a als farblose Flüssigkeit. – <sup>1</sup>H-NMR:  $\delta = 0.61$  (s; 3H, Me), 1.49 (s; 9H, *t*Bu) 4.98 (s; 2H, CH<sub>2</sub>), 7.21-7.25 (5H, Ph). - <sup>11</sup>B-NMR:  $\delta =$ 25.2.  $-{}^{13}$ C-NMR:  $\delta = -5.9$  (breit, Me), 30.3 (q; Me von *t*Bu), 50.2 (t; CH<sub>2</sub>), 55.5 (s; CMe<sub>3</sub>), 127.1 (d; p-C), 127.2 (d; o-C), 128.4 (d; *m*-C), 138.6 (s; *i*-C). – MS: m/z (%) = 230 (80) [M<sup>+</sup>], 215 (66) [M - Me], 174 (34)  $[M - C_4H_8]$ , 144 (69) [M - Me - BuN], 130 (47)  $[M - BuN - N_2 - H]$ , 91 (100)  $[C_7H_7^+]$  u.a.

1,3,5-Tribenzyl-2,4,6-triethylborazin (3a): Zu 1.50 g (6.76 mmol) 1b in 4 ml siedendem Hexan wird eine Lösung von 1.81 g (13.6 mmol) Benzylazid in 2 ml Hexan getropft. Es wird 3 d gerührt und unter Rückfluß erhitzt, dann werden die flüchtigen Anteile i. Vak. entfernt, und der Rückstand wird dreimal aus Hexan umkristallisiert. Man erhält 0.85 g (43%) farbloses 3a, Schmp. 108 °C. - <sup>1</sup>H-NMR (Bruker AM 500):  $\delta = 0.93$  (s; 5H, Et), 4.80 (s; 2H, NCH<sub>2</sub>), 7.25 (m; 2H, Ph), 7.40 (m; 3H, Ph).  $-{}^{11}$ B-NMR:  $\delta = 39.2. -{}^{13}$ C-NMR (Bruker AM 500):  $\delta = 7.5$  (t; C-1 von Et), 9.2 (q; C-2 von Et), 49.3 (t; NCH<sub>2</sub>), 125.8 (d; o-C), 126.0 (d; p-C), 128.2 (d; m-C), 143.3 (i-C). - MS: m/z (%) = 435 (74) [M<sup>+</sup>], 406 (18) [M - Et], 358 (43) [M - Ph], 344 (62) [M - CH<sub>2</sub>Ph], 328 (85) [M - Ph - Ph]2 Et], 91 (100)  $[C_7H_7^+]$  u.a.

> C<sub>27</sub>H<sub>36</sub>B<sub>3</sub>N<sub>3</sub> (435.0) Ber. C 74.54 H 8.34 N 9.66 Gef. C 74.70 H 8.54 N 9.69

Hexaisopropylborazin<sup>14</sup>): <sup>1</sup>H-NMR (Bruker AM 500):  $\delta = 1.09$ (d; 6H, Me von BiPr), 1.31 (d; 6H, Me von NiPr), 2.07 (sept; 1H, BCH), 4.10 (sept; 1 H, NCH). - <sup>13</sup>C-NMR (Bruker AM 500): 14.3 (d; BCH), 19.0 (q; Me von BiPr), 25.2 (q; Me von NiPr), 44.9 (q; Me von BiPr).

1,3,5,7-Tetrabenzyl-2,4,6,8-tetraisopropyl (4a), 1,3,5,7-Tetrabenzyl-2,4,6,8-tetraisobutyl- (4b), 2,4,6,8-Tetraisopropyl-1,3,5,7-tetrapropyl- (4c), 2,4,6,8-Tetraisobutyl-1,3,5,7-tetrapropyl- (4d), 1,3,5,7-Tetraisobutyl-2,4,6,8-tetraisopropyl- (4e), Octaisobutyl- (4f), 2,4,6,8-Tetraethyl-1,3,5,7-tetraphenyl- (4g), 2,4,6,8-Tetraisobutyl-1,3,5,7-tetraphenyl-1,3,5,7,2,4,6,8-tetrazatetraborocan (4h): Im Falle von 4a-f wird eine Mischung aus Diazadiboretidin und Azid R'N<sub>3</sub><sup>20)</sup> im Sinne von Gl. (5) in 6 ml Hexan 20 h bei Raumtemp. gerührt, die flüchtigen Anteile werden zunächst bei Raumtemp., am Schluß bei 75°C i. Vak. entfernt, und der Rückstand wird zweimal aus

Hexan kristallisiert. Im Falle von 4g wird PhN<sub>3</sub> in 3 ml Hexan zu 1b in 5 ml siedendem Hexan getropft und ohne weiteres Rühren das flüchtige Reaktionsgut bei Raumtemp. i. Vak. entfernt, während im Falle von 4h die Komponenten 1d und PhN<sub>3</sub> 50 h in 8 ml CCl<sub>4</sub> bei Raumtemp. gerührt werden, bevor die flüchtigen Anteile i. Vak. entfernt werden; 4g und 4h erhält man dann durch zweimaliges Kristallisieren des jeweiligen Rückstands aus Pentan. Weitere Angaben findet man in Tab. 1.

4-tert-Butyl-3,5-diisopropyl-2-methyl-1,2,4,3,5-oxadiazadiborolidin (5c): Zu 2.50 g (10.0 mmol) 1c in 20 ml Chloroform werden bei 0°C 1.35 g (10.0 mmol) des Nitrons N-Methylbenzaldimin-Noxid<sup>21)</sup> gegeben. Man entfernt Chloroform bei Raumtemp. i. Vak., versetzt mit 10 ml Toluol, gibt 1.56 g (11.0 mmol) Methyliodid zu und erhitzt die Mischung 100 h unter Rückfluß. Man filtriert von ausgefallenem Benzyliden-tert-butylmethylammonium-iodid, engt das Filtrat i. Vak. ein und destilliert bei 54°C/0.001 Torr 0.35 g (16%) 5c als farblose Flüssigkeit. – <sup>1</sup>H-NMR:  $\delta = 1.05$  (d; J =6.0 Hz; 6H, *i*Pr I), 1.10 (d; J = 7.1 Hz; 6H, *i*Pr II), 1.37 (s; 9H, *t*Bu), ca. 1.7 (breit; 2H, BCH), 3.27 (s; 3H, Me).  $-{}^{11}B$ -NMR:  $\delta =$ 33.0.  $-{}^{13}$ C-NMR:  $\delta = 12 - 16$  (2 BC), 18.9 und 20.1 (2q; Me von iPr I bzw. II), 33.3 (q; Me von tBu), 36.7 (q; NMe), 51.4 (s; CMe<sub>3</sub>). C11H26B2N2O (224.0) Ber. C 58.99 H 11.70 N 12.51

Gef. C 57.34 H 12.00 N 12.21

4-tert-Butyl-3,5-diisobutyl-2-methyl-1,2,4,3,5-oxadiazadiborolidin (5d): Ebenso erhält man aus 3.61 g (13.0 mmol) 1d und 1.76 g (13.0 mmol) desselben Nitrons unter Anwendung von 5.68 g (40.0 mmol) Methyliodid bei Sdp. 56°C/0.001 Torr 1.34 g (41%) 5d. - <sup>1</sup>H-NMR:  $\delta = 0.93$  (d; 12H, Me von 2 *i*Bu), 0.97 und 1.06 (2 d; 4H, BCH<sub>2</sub>) 1.35 (s; 9H, tBu), 1.87 (mc; 2H, CH von 2 iBu), 3.21 (s; 3H, NMe).  $-{}^{11}$ B-NMR:  $\delta = 31.4$ .  $-{}^{13}$ C-NMR:  $\delta = 25.5$  und 25.6 (2 q; Me von 2 iBu), 25.7 und 27.0 (2 d; CH von 2 iBu), 25-27 (2 BC), 33.3 (q; Me von tBu), 35.6 (q; NMe), 51.3 (s; CMe<sub>3</sub>).

C13H30B2N2O (252.0) Ber. C 61.96 H 12.00 N 11.12 Gef. C 60.29 H 12.29 N 10.90

4-tert-Butyl-3,5-dipropyl-2-methyl-1,2,4,3,5-oxadiazadiborolidin (5e): Ebenso erhält man aus 2.70 g (10.8 mmol) 1e und 1.50 g (11.1 mmol) desselben Nitrons nach Zugabe von 1.56 g (11.0 mmol) Methyliodid bei Sdp. 55 °C/0.001 Torr 0.52 g (21%) 5e. - <sup>1</sup>H-NMR:  $\delta = 0.84 - 1.66 (14 \text{ H}, 2 \text{ Pr}), 1.34 (s; 9 \text{ H}, t \text{Bu}), 3.19 (s; \text{ NMe}). - {}^{11}\text{B-}$ NMR:  $\delta = 32.4$ ,  $-{}^{13}$ C-NMR:  $\delta = 16.7 - 19.7$  (2 BC), 17.3 und 17.6 (2 t; C-2 von Pr I und II), 18.8 und 19.7 (2 q; C-3 von Pr I bzw. II), 33.2 (q; Me von tBu), 35.1 (q; NMe), 51.3 (s; CMe<sub>3</sub>). C11H26B2N2O (224.0) Ber. C 58.99 H 11.70 N 12.51 Gef. C 58.40 H 11.80 N 12.05

CAS-Registry-Nummern

1a: 62948-82-7 / 1b: 96609-50-6 / 1c: 93109-73-0 / 1d: 99028-01-0 / 1a.  $62546-62^{-7}$  / 1b. 96009-50-6 / 1c. 95109-75-6 / 1a. 99028-01-0 / 1e. 96609-51-7 / 2a. 134152-42-4 / 3a. 134152-43-5 / 4a. 134152-44-6 / 4b. 134152-45-7 / 4c. 134152-46-8 / 4d. 134152-47-9 / 4e. 134152-48-0 / 4f. 134152-49-1 / 4g. 134152-50-4 / 4h. 134152-51-5 / 5c. 134152-52-6 / 5d. 134152-53-7 / 5e. 134152-54-8 / PhCH<sub>2</sub>N<sub>3</sub>: 622-79-7 / PrN<sub>3</sub>: 22293-25-0 / *i*BuN<sub>3</sub>: 13686-31-2 / PhN<sub>3</sub>: 622-37-7 / PhHC = N(Me) = 0: 3376-23-6 / Pr<sub>2</sub>BCI: 22086-53-7 / 20. 53-9 / Me<sub>3</sub>Si(tBu)NB = NtBu: 93109-75-2 / (MeBNtBu)<sub>4</sub>: 96609-49-3

<sup>&</sup>lt;sup>1)</sup> Herrn Professor Paul Binger zum 60. Geburtstag gewidmet.

 <sup>&</sup>lt;sup>2)</sup> P. Paetzold, Adv. Inorg. Chem. **31** (1987) 123.
 <sup>3)</sup> P. Schreyer, P. Paetzold, R. Boese, Chem. Ber. **121** (1988) 195. <sup>4)</sup> P. Paetzold, J. Kiesgen, K. Krahé, H.-U. Meier, R. Boese, Z. Naturforsch., Teil B, im Druck.

<sup>&</sup>lt;sup>5)</sup> P. Paetzold, A. Richter, T. Thijssen, S. Würtenberg, Chem. Ber. 112 (1979) 3811.

<sup>&</sup>lt;sup>9</sup> P. Paetzold, C. von Plotho, G. Schmid, R. Boese, Z. Naturforsch., Teil B, 39 (1984) 1069.

- <sup>7)</sup> P. Paetzold, K. Delpy, R. Boese, Z. Naturforsch., Teil B, 43 (1988)
- <sup>81</sup> K. Delpy, H.-U. Meier, P. Paetzold, C. von Plotho, Z. Naturforsch., Teil B, 39 (1984) 1696.
  <sup>81</sup> T. Franz, E. Hanecker, H. Nöth, W. Stöcker, W. Storch, R. T. Franz, E. Hanecker, M. Nöth, W. Stöcker, W. Storch, R.
- Winter, Chem. Ber. 119 (1986) 900.
- <sup>10)</sup> P. Paetzold, E. Schröder, G. Schmid, R. Boese, Chem. Ber. 118 (1985) 3205.
- (1985) 5205.
   (1985) 5205.
   (19 K. Delpy, D. Schmitz, P. Paetzold, Chem. Ber. 116 (1983) 2994.
   (12 K.-H. van Bonn, T. von Bennigsen-Mackiewicz, J. Kiesgen, C. von Plotho, P. Paetzold, Z. Naturforsch., Teil B, 43 (1988) 61.
   (13 X. A. C. Eller, C. Eller, C. Eller, J. Chem. 205 (1988) 61.
- <sup>13)</sup> H. A. Steuer, A. Meller, G. Elter, J. Organomet. Chem. 295 (1985) 1.
- <sup>14)</sup> H.-U. Meier, P. Paetzold, E. Schröder, Chem. Ber. 117 (1984) 1954.
- <sup>15)</sup> P. Paetzold, C. von Plotho, Chem. Ber. 115 (1982) 2819.

- <sup>16</sup> F. Faetzold, C. von Fronto, *Chem. Der.* **119** (1972) 2017.
   <sup>16</sup> B. Wrackmeyer, H. Nöth, *Chem. Ber.* **109** (1976) 3480.
   <sup>17</sup> P. T. Clarke, H. M. Powell, *J. Chem. Soc. B* **1966**, 1172.
   <sup>18</sup> V. J. Spitsyn, J. D. Kolli, T. G. Sevastyanova, *Izv. Akad. Nauk* SSSR, Ser. Khim **1973**, 1203.
   <sup>19</sup> P. Käster, M. A. Grassbarger, Lighias Ann. Chem. **719** (1968)
- <sup>19)</sup> R. Köster, M. A. Grassberger, Liebigs Ann. Chem. 719 (1968)
- <sup>20)</sup> W. P. Reeves, M. L. Bahr, Synthesis 1976, 823.
  <sup>21)</sup> O. L. Brady, F. P. Dunn, R. F. Goldstein, J. Chem. Soc. 1926, 2386.

[143/91]